Ciencia de datos e interpretación

La ciencia, como todos los grandes constructos psicosociales y simbólicos humanos, tiene su orden de problemas angulares. Uno de ellos es la gran cuestión de la interpretación de los datos y la predicción. Quizá en la ciencia de datos vemos la objetivación más clara de lo anterior en mucho tiempo. Aunque con un añadido que lo cambia todo: cuando hablamos, por ejemplo, de Big Data y Data Science enfocados al análisis de datos nos dirigimos a sistemas de información que se convierten en movilización de la estructura, en acción casi inmediata.

Así es, en ciencia de datos los gráficos, las tablas, etc. son típicas, pero resultan casi inmediatamente aplicables a situaciones concretas.

Síntesis de datos = mayor eficiencia en los resultados.

Claro, no perdamos de vista que las técnicas utilizadas en ciencia de datos ensamblan metodologías arribadas desde la Estadística y los sistemas de computación. Empezando con la clasificación, con la finalidad de ordenar los datos en grupos, conjuntos, categorías, etc. Cuando tenemos un orden y criterios de identificación, podemos implementar algoritmos de decisión que nos ayudarán a categorizar más profundamente y procesar con mayor velocidad.

Casos típicos de lo anterior es el ordenamiento de un catálogo de productos, por ejemplo, de más a menos vendidos, de más a menos referenciados o comentados. También es una forma de analizar el comportamiento digital mediante los relatos vertidos en redes sociales, donde las expresiones tienen asignadas calificaciones numéricas o negativas frente a positivas. Más allá tendríamos los estudios de riesgo en sectores sensibles como las finanzas, el mercado inmobiliario o los seguros.

¿Y QUÉ VIENE DESPUÉS?

Después llega la regresión, donde vemos una de las más importantes fortalezas de la ciencia de datos. Imaginemos que tenemos un conjunto de datos, donde podrían existir relaciones ocultas o no evidentes entre dos puntos o nudos de información, dos lugares que no parecen tener vínculo alguno. Pero nuestra investigación nos hace aplicar una formulación matemática que encuentra y nos modela (con gráficos de curva, por ejemplo) una relación hasta ese momento desconocida.

¿Cómo ocurre esto? Sencillamente porque, cuando se conocen los valores de un punto de datos al interior de la matriz, la regresión puede predecir el otro punto de la relación.

Igualmente, tendríamos casos en acontecimientos sociales X en un espacio determinado (un hecho criminal, un incendio, una inundación, un accidente, etc.), el número de afectados y el número o características de las estructuras de respuesta, como fuerzas policiales, bomberos, personal sanitario, etc. Dos conjuntos de datos relacionados, pero no de forma clara. También podríamos nombrar escenarios como clientes satisfechos durante una ventana de tiempo en contraste con número de trabajadores en activo en ese mismo espacio y tiempo. O transmisión de enfermedades durante un lapso temporal - temperaturas o comportamiento del aire.

Luego nos encontramos con conceptualizaciones fundamentales como clústeres. Aquí tenemos otro de esos momentos donde la ciencia de datos muestra sus fortalezas: cuando logramos hacer agrupaciones de datos donde las relaciones están visibilizadas podríamos allanar el camino para encontrar anomalías, fenómenos inesperados, pautas o patrones… Y esto es uno de los cometidos fundamentales de la ciencia de datos. En los clústeres la agrupación se genera por relaciones probables.

Esto nos permite, entre otros casos, identificar patrones en el comportamiento digital, en términos de consumo, tráfico, creación de contenidos, etc. Para nombrar un caso interesante, existen organizaciones utilizando clústeres para detectar flujos de información en la red donde se extienden noticias falsas, uno de los grandes problemas de la actualidad por sus implicaciones en la conducta política de los ciudadanos.

Las nuevas economías demandan Big Data y Data Science para navegar por grandísimos volúmenes de información y lograr la edificación de modelos que generan variables nuevas, a la vez que se acercan a uno de los fines del discurso científico: la predicción. Entre los aspectos que hacen al Data Science y el Big Data tan enigmático entre los paradigmas tecnológicos está la posibilidad de utilizar datos de una diversidad que hace algunos años habría significado una barrera enorme.

Todo lo anterior son rasgos vertebradores del programa modular (Experto, Especialista y Máster) en Big Data y Data Science de la Universidad Nacional de Educación a Distancia - UNED.


MÁSTER EN BIG DATA Y DATA SCIENCE - CONVOCATORIA 2025 - MATRÍCULA ABIERTA